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This paper presents a comparative analysis of  the Ultra Weak Variational Formulation (UWVF) and the  Generalized Finite Element 

Method (GFEM) approaches to compute the solution field generated by the scattering of an incident plane wave by a PEC obstacle. The 

aim is to show how the specific features of each approach can be used to improve the approximated solution. The results are supported 

by numerical experiment and a case study for a single simple geometry. 

 

Index Terms — Ultra Weak Variational Formulation, Generalized Finite Element Method, Plane Wave Basis, Condition Number. 

 

I. INTRODUCTION 

or Helmholtz equation the classical  Finite Element Method 

(FEM) requires the mesh size parameter h smaller than 

1/10th of the wavelength. This requirement may be an issue 

when the physical system is defined in an electrically large 

structure [1]. In this case, not only the computational cost will 

be high but the accuracy can also degrade. To overcome these 

drawbacks new versions of the FEM have been proposed in the 

literature. The main feature of these methods is that unlike the 

standard FEM the trial space might not be polynomials [2].  

Here we consider two alternate approaches of the FEM, the 

Generalized Finite Element Method (GFEM) [3] and the Ultra 

Weak Variational Formulation (UWVF) [4] to solve the Helm-

holtz equation. The common feature is that they include plane 

wave basis functions to approximate the solution. It leads to ac-

curate solution with mesh size greater than one wavelength [5]. 

On the other hand, while the GFEM is a continuous Galerkin 

method the UWVF is a discontinuous one. This distinction 

cause them to perform numerically different. 

In this paper we compare the GFEM and the UWVF ap-

proaches for solving electromagnetic scattering problems. The 

aim is to show how they can be used to improve the approxi-

mated solution. The results are supported by numerical experi-

ments and a case study. 

II. DESCRIPTION OF THE APPROACHES 

The model problem solves the electromagnetic field gener-

ated by the scattering of an incident plane wave by a PEC ob-

stacle. The governing equation is the Helmholtz equa-

tion ��� + ��� = 0 where k is the wave number and u is the z 

component of the electric field. On the boundary of the obstacle 

we impose homogeneous Dirichlet. The exterior domain is trun-

cated with a zero order absorbing boundary condition. 

A. GFEM Approach 

The key feature of the GFEM is the enrichment of the 

standard FEM by including solutions of the homogeneous 

governing equation. In this work plane waves are used for the 

Helmholtz equation. On each triangular element, the scalar field 

is expanded as in [6]. 

where 	
��
 are the hat FEM function and �
� are the plane 

wave amplitudes at the q direction. The functions �
����
 and 

the coefficients �
  are associated with each node. Their 

presence makes it easy to impose essential boundary conditions 

at the expense of adding one unknown per node [6]. The main 

role of the partition of the unity is to glue-together the element-

wise approximation. The number of plane waves attached to 

each node will depend on the wave number and element size.  

The stiffness matrix of GFEM is built using the Galerkin 

scheme to discretize the standard weak form of the problem. 

The weight functions are chosen from plane wave basis. The 

algebraic system is symmetric and sparse.   

B. UWVF Approach 

Unlike GFEM, the UWVF is based on a discontinuous Ga-

lerkin FEM. For a given partition of the domain we restrict the 

strong form to each element with homogeneous physical pa-

rameters. On the interfaces between elements the continuity of 

the solution and its normal derivative are enforced via Robin 

type condition. Using test functions that are solutions of the ad-

joint Helmholtz equation, the variational equations for UWVF 

are obtained from integration by parts of the element strong 

form [4]. Two consequences of this formulation are that each 

element has its own Degrees of Freedom (DoF) and the conti-

nuity of the approximate solution is weakly enforced.  To dis-

cretize the variational form the approximate solution and the 

weighting functions are represented by linear combination of 

the plane waves defined in each element. The resulting matrix 

equation can be written as �� − �
� = �, where D is Hermitian 

block diagonal matrix. The matrix C has off-diagonal block 

F
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structure and represents the interface constraints. Since it is 

cheap to obtain the inverse of D, we solve the preconditioned 

form �! − �"��
� = �"�� as suggested in [5].  Once the so-

lution vector X is computed, the field inside each element is 

approximated as 

����
 = � #
��
���
�
��� . (2) 

III. NUMERICAL EXPERIMENTS 

In the simulations the boundary of the obstacle is a circle of 

radius 0.3λ. The truncating boundary defines a circle of radius   

3λ. The wave number is � = 20& and the direction of the 

incident wave is parallel to x axis. The partition of the 

computational domain is done by triangular elements with ℎ()* = 1,, where ℎ()*  is the longest edge. Close to the 

scatterer, there is a concentration of small elements in order to 

represent the circular shape of the object. The mesh has 184 

nodes and 332 elements. The accuracy of the two methods is 

compared in Fig. 1a. The relative error in the solution is plotted 

against the number of DoF. For this case, it is clear that the 

GFEM performs better than UWVF when we increase the 

number of DoF. 

 

 
 

Fig. 1. Numerical performance of the GFEM, UWVF and UWVF*, a) relative 

error in the solution and b) condition number of the linear system. 

 

 As can be seen in Fig. 1b both approaches lead to ill-

conditioning of the linear system. This potentially results in 

degradation of the solution when we increase the number of 

wave directions, Fig. 1a. Next we try a non-uniform distribution 

of wave directions for each element in the UWVF.  In this case, 

the condition number of the element D matrix is verified when 

new directions are attached [7]. In this study the number of basis 

functions for each element is chosen such that the condition 

number stay below the limit 10�-. This approach is called 

UWVF*. Note that the unstable behavior for high condition 

number is mitigated, however, this technique does not 

guarantee a lower bound on the accuracy. 

 

 
 

Fig. 2. The total field obtained from GFEM, UWVF  and Analytical solutions  

sampled along the x axis, a) real part and b) imaginary part. 

 

The total field solution along the x axis of the computational 

domain is shown in Fig. 2. For the GFEM the relative error is 

1.25% and for the UWVF 5.81%. They correspond to the 

smaller error shown in Fig. 1a. No dispersion error is 

noticeable, however, the UWVF solution presents a significant 

amplitude error close to the scatterer. 

IV. CONCLUSION 

A case study was used to access the numerical performance 

of the GFEM and UWVF in solving the electromagnetic 

scattering with large wave number. Both approaches lead to ill-

conditioning of the linear system, however, unlike the GFEM, 

the UWVF allows to control the condition number through the 

element D matrix. In terms of accuracy the GFEM performed 

better than UWVF but unstable behavior can be observed. In 

the full paper, more realistic case studies and new experiments 

will be investigated. 
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